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Figure 1: Text2Texture generates an image from a text prompt and converts this into a textured 3D object ready for 3D printing.
(A) Users enter a text prompt in the web tool or upload an image directly. (B) Users can [2] generate or draw labeled masks such
as "tree" which synthesizes a texture applied locally to the mask. [3] Users then select scaling parameters that a depth estimator
uses to extrude the 2D image into a 2.5D surface. (C) Text2Texture then superimposes the texture and depth map to render a
3D-printable model in the viewport. (D) The 3D printed model captures both macroscopic depth and locally applied textures.

Abstract

To support users’ understanding of physical properties in 2D images,
we propose Text2Texture, a webtool that converts 2D color images
into textured 3D objects ready for 3D printing. This is achieved by
extracting depth information using a monocular estimator, extract-
ing local texture information using a fine-tuned stable diffusion
model, and superimposing these macro- and micro-scale geometries
to produce a composite 3D model with color, depth and texture. Im-
ages can be uploaded directly or generated via text prompt, and we
print a variety of objects generated using each approach to suggest
applications in physicallizing virtual worlds, adding haptic cues to
photographs, and conveying information about scale in images.
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1 Introduction

Images are a primary medium through which people experience the
world, from sharing photographs to consuming visual art. While
images capture visual information about the physical world, they
do not transmit critical information about the size, texture, and
materials of an image’s contents in the way that tactile information
can through touch. However, 3D printing presents the ability to
transmit the physical information implicit in images by converting
these to physical objects with tactile or haptic cues [4, 6, 12].
While recent tools have advanced specific aspects of translat-
ing visual inputs into physical form, they extract individual phys-
ical properties from images. For example, depth estimation tech-
niques [2, 3] can extract macroscale depth from a single image,
capturing global shape and spatial layout, but does not capture lo-
cal micro-features for texture. Separately, tools such as Gelsight [9]
enables the extraction of microgeometry details for surface tex-
tures, producing 3D-printable tactile models. Recent methods [5]
enable prediction of these micro-geometry features, but no existing
system integrates macroscale geometry, microscale texture, and
color appearance into a unified 3D model. Our system bridges this
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Figure 2: (Above) Image inputs to Text2Texture and (below) the resulting 3D printed objects for (A) a painting, (B) a mountain
range, (C) a topological world map, (D) a still life image, (E) a vista of Mt. Rainier, and (F) a photo of a family member reading.

gap by combining monocular depth estimation, semantic texture
synthesis, and visual color cues into a single end-to-end pipeline.
The result is a textured, colored, and depth-aware 3D model that
aims to encode both the form and feel of the input image.

Text2Texture converts a 2D color image into a textured 3D object
ready for 3D printing. Implemented as a web interface, users can
upload an image directly or generate one with a text prompt. A
monocular estimator predicts a macroscale heightmap from this
image, extruding the 2D image to form a closed 2.5D surface. In par-
allel, semantic segmentation is used to partition the image into local
textures, such as tree, rocks, grass etc. The system extracts these
textual features and uses a fine-tuned stable diffusion model to ex-
tract the microgeometry representing their textures. Text2Texture
then superimposes the macroscale geometry from the heightmap
with the microscale geometry representing each feature’s texture.
The result is a 3D-printable model of the image that captures both
depth information from the scene and haptic information related
to the texture of individual features within the scene.

2 Text2Texture

Text2Texture integrates an interactive web interface with an Al-
driven multi-model processing pipeline. To use the tool, users either
upload an image or provide a textual scene description, the latter be-
ing synthesised into an image by OpenAI's DALL-E 3 [1]. Next, the
image is automatically segmented with Segment-Anything Model
(SAM) [10]. These semantic regions are automatically labeled with
Florence-2 [14], which the user can edit if needed. The interface
allows additional user-guided edits—clicking points or drawing
bounding boxes to re-run SAM on selected areas—thereby produc-
ing high-quality masks even for intricate object boundaries.
Masked regions may be renamed, enabled, or deleted, and each
accepted mask triggers the generation of a fine-grained heightfield
encoding surface micro-texture. These heightfields are produced
by TactStyle, a system that generates surface microgeometry as
heightfields using a fine-tuned stable-diffusion model, enabling
3D-printed objects that have both the appearance and feel of real-
world textures [5]. We fine-tuned TactStyle with the MatSynth [13]
dataset to enable a larger set of textures to be generated, ensuring
photorealistic, material-aware detail that aligns with the semantic

label of each region. In parallel, the complete image is passed to
ZoeDepth [3], a monocular estimator that predicts a dense global
depth field. This depth map is normalized to a user-specified range
and additively merged, within mask boundaries, with all regional
texture height-maps. Thus, at the end of this process, there are two
heightfields, one representing the texture (microgeometry), and
the other representing the depth map (macrogeometry). These two
heightfields are then composed together. Empirically, we found that
a 90%-10% ratio of macro-micro geometry combination provides for
an accurate replication of both depth and texture in the 3D model.
Next, this composite heightfield is sampled at the native image
resolution to displace the top surface of a uniform-thickness rect-
angular block; the algorithm triangulates both the modulated top
face and a flat bottom face on this grid, then stitches corresponding
perimeter vertices to form continuous side walls, producing a wa-
tertight mesh ready for 3D printing. Throughout the workflow, the
web interface provides real-time previews together with a concise
parameter set—depth scale, base thickness, and a toggle between
protrude (raising height-mapped features above the block surface)
and carve (engraving them below it) modes—supporting iterative
refinement without exposing low-level model orchestration. On
completion, the user may export the model for fabrication. We
showcase fabrication by 3D printing all models on a Stratasys J55
printer, with Vero family materials that allow full-color 3D printing.

Text2Texture bridges a gap between vision and fabrication, mak-
ing it possible to not just see but touch the content of images. We
believe it opens the door to rich, cross-modal design experiences
that are tactile, expressive, and physical.

3 Applications & Future Work

We use Text2Texture to generate and print a variety of 3D models
from both image and text prompts (Fig 2). These suggest how users
can interact physically with objects within art (Fig 2A,D); impart a
sense of scale to landscape images (Fig 2B,C); and embed haptic cues
in photographed memories (Fig 2E,F). Future work will evaluate
how to superimpose macro-scale geometry and micro-scale texture
to maximize perceptual attributes via psychophysical perception
experiments [7, 8, 11], and how the tool can be used by blind and
low-vision participants to create tactile story-boards.
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