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Abstract

Imagined speech decoding from stereotactic EEG
(sEEG) is hindered by limited data and faint signals, mak-
ing it challenging to train good speech reconstruction mod-
els. We propose a curriculum transfer learning approach
to improve reconstruction from sEEG recordings of imag-
ined speech. Our method leverages the VocalMind dataset,
which provides parallel sEEG recordings for vocalized,
mimed, and imagined Mandarin speech [6]. We first train
a neural network on vocalized speech data, then sequen-
tially fine-tune it on mimed speech and finally on imagined
speech. Two architectures are explored: a baseline convo-
lutional net plus gated recurrent unit (CNN+GRU) and a
CNN plus Transformer sequence model. Results indicate
that while cross-modal curriculum transfer learning was
unable to improve on the baseline for imagined speech, it
was effective in transferring significant learning from vocal-
ized and mimed training to the imagined speech reconstruc-
tion task, speeding up convergence during fine-tuning on
imagined speech. Further research is needed to determine
whether transfer learning from large, rich datasets helps the
model actually learn certain features more effectively than
a limited imagined baseline.

1. Introduction

Reconstructing intelligible speech from brain activ-
ity (colloquially known as “mind-reading”) is a long-
standing goal of neuroscience. Recent invasive BCIs (brain-
computer interfaces) have demonstrated impressive results
in decoding overt speech and restoring speech for paralyzed
patients [1, 5]. However, decoding imagined speech (inter-
nal speech without vocalization) remains challenging due
to weaker neural signals and the lack of large, labeled train-
ing data. In imagined speech tasks, subjects merely think
of words or sentences, producing no audible output for di-
rect supervision. Models trained solely on imagined speech

often generalize poorly and produce low-quality reconstruc-
tions.

One promising approach to address data scarcity is trans-
fer learning across related speech tasks [4]. Intuitively, vo-
calized (spoken aloud), mimed (silent mouthing), and imag-
ined speech share underlying neural processes, forming a
“nested hierarchy” of speech activity [4]. Studies have
shown that neural patterns for overt, mouthed, and imagined
speech are related, differing mainly in the presence or ab-
sence of articulatory movement and auditory feedback. This
suggests that a model trained on overt speech data might
capture features and mappings that are partially reusable for
silent or imagined speech decoding. If we can leverage the
richer vocalized speech data to inform models for imagined
speech, we may overcome the generalization issues caused
by limited imagined speech samples, or even utilize subtle
articulatory, auditory, or other cues in the imagined sEEG
that might not otherwise be picked up.

We present a curriculum transfer learning strategy that
progressively trains a speech reconstruction model across
modes of decreasing observability. We take advantage of
and base our models heavily on the recently released Vo-
calMind dataset [6], the first public sEEG dataset to in-
clude parallel recordings of vocalized, mimed, and imag-
ined speech in a tonal language (Mandarin Chinese). Our
method uses a three-stage training curriculum:

1. Stage 1 (Vocalized Pre-training): Train a model
to map sEEG signals to corresponding speech audio
(represented as mel-spectrograms) using the vocalized
speech data, which has the strongest signals.

2. Stage 2 (Mimed Fine-tuning): Fine-tune the model
on mimed speech sEEG data, using the vocalized-
mode audio as a surrogate ground truth (since mimed
doesn’t produce sounds). This adapts the model
to silent articulation neural patterns while retaining
knowledge from Stage 1.

3. Stage 3 (Imagined Fine-tuning): Further fine-tune



on imagined speech sEEG data (again using the same
ground truth as Stage 2) to adapt to purely internal
speech.

Through this curriculum, the model incrementally learns
to handle the diminishing feedback cues, rather than tak-
ing on the hardest task (imagined speech) from scratch.
We implement the strategy with two network variants: a
baseline 1D CNN+GRU model, and a CNN+Transformer
model that can capture longer-range temporal dependencies
(in line with prior work [6]). We evaluate our approach on
word- and sentence-level tasks from VocalMind, compar-
ing no-transfer baselines (trained only on imagined data) to
curriculum transfer models.

Contributions: We introduce a novel application of
curriculum-based transfer learning for speech BCI:

• We leverage cross-modal sEEG data (vocalized,
mimed, imagined speech) to get a reasonable imagined
speech decoding. To our knowledge, this is the first
demonstration of curriculum learning across speech
modes in an sEEG interface.

• Our curriculum-trained models outperform <50
epochs of direct training on imagined speech, yielding
more accurate mel-spectrogram reconstructions (lower
Mel-Cepstral Distance) and stronger similarity metrics
(higher Pearson and DTW-aligned correlations, lower
Pitch RMSE, higher Pitch Correlation). However, we
fail to outperform a baseline trained to convergence.

• We provide insights into the model’s learning progres-
sion and discuss how vocalized and mimed speech
data contribute to improved representations for silent
speech.

2. Related Work

2.1. Speech BCI and Neural Speech Decoding

Decoding speech from brain activity has advanced
rapidly in recent years. Using high-density electrocorticog-
raphy (ECoG) or intracortical arrays, researchers have re-
constructed audible speech or text from neural signals of
people speaking or attempting to speak [1,5]. Notably, Anu-
manchipalli et al. [1] synthesized intelligible spoken sen-
tences from ECoG signals by decoding articulatory repre-
sentations and mapping them to a vocoder. More recently,
Metzger et al. [5] demonstrated a full-stack neural speech
prosthesis that decoded attempted speech in a paralyzed pa-
tient at 78 words per minute, driving a text-to-speech avatar.
These works underscore the potential of invasive BCIs for
restoring communication. Stereotactic EEG (sEEG), which
uses depth electrodes implanted for epilepsy monitoring,
is a less-explored recording modality for speech BCI [2].

Arthur and Csapó [2] reported one of the first studies re-
constructing speech from sEEG, using a neural vocoder to
synthesize audio from intracranial signals. The VocalMind
dataset introduced by He et al. [6] is a significant contribu-
tion in this area, providing over one hour of sEEG record-
ings with aligned speech data in Mandarin. Their baseline
models showed that decoded mel-spectrograms from sEEG
can achieve high similarity to the original speech, validating
the dataset’s quality.

2.2. Imagined and Silent Speech Decoding

Mimed speech (articulation without sound) falls between
speaking and pure imagination. Both mimed and imag-
ined speech lack auditory output, complicating training and
evaluation since there is no directly recorded audio. Pre-
vious studies have sought evidence of decodable signals in
these modes. Angrick et al. [3] achieved real-time synthe-
sis of imagined phrases from ECoG-like minimally inva-
sive recordings, although with limited vocabulary. Other
works have attempted imagined speech decoding with non-
invasive EEG, but reconstructing intelligible speech from
scalp signals has proven very difficult. For example, a re-
cent EEG-based study by Xiong et al. [7] introduced an
EEG-to-speech model that produced some understandable
words from imagined EEG, by aligning imagined EEG with
actual speech EEG through dynamic time warping. Their
results, while promising, highlight that additional innova-
tions (like transfer learning and alignment) are needed to
handle the noisier signals in imagined speech tasks.

2.3. Transfer Learning and Curriculum Learning
in BCIs

Transfer learning can be used in BCIs to handle data
scarcity, by pre-training on larger datasets or related tasks.
In the context of speech BCI, researchers have consid-
ered multi-task learning or transfer between speech per-
ception and production, or between different subjects, to
improve generalization [4]. The VocalMind dataset itself
was designed to facilitate cross-mode transfer learning re-
search [6]. Our approach is inspired by curriculum learning,
where a model is trained on easier subtasks before tackling
the hardest task. Curriculum strategies have been effective
in domains like computer vision and natural language, but
is only beginning to be explored for neural decoding. To
our knowledge, our work is the first to apply a curricu-
lum across speech modes (vocalized→mimed→imagined)
in invasive BCI. It is conceptually related to Xiong et al.’s
EEG study [7] and other heterogeneous transfer learning ap-
proaches in imagined speech BCIs (e.g., EEG-based word
classification via transferred features).



3. Methods
3.1. Dataset and Preprocessing

We use the VocalMind sEEG dataset [6] and identi-
cal pre-processing, focusing on its parallel recordings of
vocalized, mimed, and imagined speech. In this dataset,
a native 22-year Mandarin-speaking male participant with
stereotatic-EEG implants performed multiple trials of read-
ing words and sentences. Each trial is labeled with the tar-
get phrase and has an associated time-aligned audio record-
ing for the vocalized condition. In total the dataset pro-
vides 20 words and a set of 100 sentences (each with 5-8
characters, repeated twice per speech-mode), with over one
hour of sEEG data across all conditions. Because mimed
and imagined trials produce no sound, the vocalized audio
for the same prompted phrase is used as a proxy ground
truth for training and evaluation. All audio was sampled at
48kHz and downsampled to 16 kHz, then converted to mel-
spectrograms with 80 mel filterbank channels (the same
setup as in the VocalMind baseline). Each mel-spectrogram
frame corresponds to ∼20 ms of audio, yielding spectro-
gram sequences on the order of a few hundred time-steps
for each word or sentence.

Raw sEEG signals from each implanted electrode con-
tact were preprocessed following the procedure of He et
al. [6]. This includes common preprocessing steps such as
band-pass filtering the neural signals (e.g., 70–150 Hz) and
downsampling (e.g., to 200 Hz) to reduce high-frequency
noise. Artifact removal was also performed to ensure data
quality. We further downsample the sequence in time when
feeding it to the neural network by applying a 1-D convo-
lution with stride 4 as the first network layer, reducing the
input length by 4×, roughly matching the ratio of original
signal sampling rate to mel frame rate. The sEEG features
are standardized (z-scored) per electrode.

Speech audio for each trial (for vocalized trials, the
recorded audio; for silent trials, the corresponding vocalized
audio of that phrase) is converted to an 80-dimensional mel-
spectrogram using a short-time Fourier transform (STFT)
with 64 ms window length and 20 ms hop. During training,
we minimize the Mean Squared Error (MSE) between the
predicted and ground-truth mel-spectrogram frames.

During evaluation, we synthesize waveforms from the
predicted mel-spectrograms with a pre-trained HiFi-GAN
vocoder [6]. From the waveforms, we then compute the Mel
Cepstral Distortion and extract the fundamental frequency
(f0) required for the Pitch RMSE and Pitch Correlation met-
rics.

3.2. Neural Network Architecture

Our model is based on the baseline architecture de-
scribed in the VocalMind paper [6]. The input to the net-
work is a sequence of multi-channel sEEG features (time ×

channels). The network processes these inputs as follows:

Convolutional Encoder: A one-dimensional conv layer
(Conv1D) with 64 output channels, filter size 4, stride 4,
and padding 2 acts as the encoder. This layer reduces the
temporal resolution by a factor of 4 while increasing the
feature dimension. We use a ReLU activation followed by
dropout (dropout rate 0.7). The output is flattened to form a
sequence of feature vectors for the recurrent layer.

Recurrent Decoder (GRU): The core sequence model-
ing is performed by a 3-layer bidirectional GRU with 256
hidden units per direction (512 total per layer when bidi-
rectional). The input size to the GRU is 64 (matching the
Conv1D output channels). A dropout of 0.7 is applied be-
tween GRU layers. The bidirectional GRU allows the model
to utilize both past and future context.

Output Layer: A fully connected layer maps the final
GRU layer’s output at each time step to an 80-dimensional
output, corresponding to the mel-spectrogram frame at that
time step. We use a linear activation (i.e., no nonlinearity)
on the output since we are predicting continuous spectro-
gram values.

The total number of trainable parameters in this
CNN+GRU model is on the order of a few million, which is
modest enough to train on ∼1 hour of data without severe
overfitting. We refer to this architecture as CNN+GRU in
our experiments.

CNN+Transformer Variant: In addition to the GRU-
based model, we experimented with replacing the recurrent
layers with a Transformer encoder. This model uses the
same Conv1D encoder for initial feature extraction. After
that, instead of GRUs, we use a stack of Transformer en-
coder blocks (3 layers, 4 heads, embedding dim 64, feed-
forward dim 256). The output from the last Transformer
layer at each time step is passed through a linear layer
to predict the 80-dim mel-spectrogram frame. We apply
dropout with rate 0.7 in the Transformer. We call this model
CNN+Transformer in experiments.

Learning Rate and Progressive Unfreezing Schedule:
After tuning, we decided on the following hyperparame-
ters for training both the CNN+GRU and CNN+transformer
models: Stage 1 was trained for 100 epochs with a learning
rate of 1 × 10−3, Stage 2 for 20 epochs with a learning
rate of 5 × 10−4, and Stage 3 for 10 epochs with a learn-
ing rate of 1 × 10−5. The Stage 2/3 unfreeze schedule for
both the GRU and transformer is expressed as [0, 10, 20] to
indicate that the topmost layer is unfrozen at epoch 0, the
middle layer unfrozen at epoch 10, and the bottom layer at
epoch 20 (so for imagined fine-tuning only the top layer is
unfrozen and for mimed fine-tuning, the top two layers are
progressively unfrozen).



3.3. Evaluation Metrics

Following the original VocalMind study, we report the
same five objective metrics used to assess mel-spectrogram
reconstruction:

• Mel-Cepstral Distance (MCD) [6]: Quantifies spec-
tral differences between predicted and reference spec-
trograms; lower values indicate higher similarity.

• Pearson Correlation Coefficient (Correlation):
Measures linear correlation between predicted and
ground-truth spectrograms; higher (closer to 1) is
better.

• DTW-Aligned Correlation (DTW Correlation): For
mimed and imagined speech, the prediction is aligned
to the corresponding vocalized spectrogram with Dy-
namic Time Warping before computing Pearson corre-
lation; higher is better.

• Pitch Root-Mean-Square Error (Pitch RMSE): Af-
ter DTW alignment of fundamental-frequency (f0)
contours extracted with the DIO algorithm, lower
RMSE indicates better pitch accuracy.

• Pitch Correlation: Pearson correlation between the
aligned f0 contours; higher is better.

Results for all five metrics are shown in the Appendix sec-
tion.

4. Experiments
4.1. Experiment Setup

We perform separate experiments for word-level and
sentence-level decoding. 6-fold cross-validation is used as
in the VocalMind baseline [6]: for words, ensure each fold’s
test set contains one instance of each word; for sentences,
each test set contains a subset of sentences not seen in train-
ing.

All models were implemented in PyTorch and trained on
an NVIDIA H100 GPU. Curriculum models train in three
stages (vocalized → mimed → imagined) within each fold.
For baselines, we train the same architectures on imagined
speech only, and utilize early-stopping.

Model Conditions:

• Imagined-Only (Baseline): CNN+GRU trained from
scratch on imagined data.

• Curriculum (Vocal→Mimed→Imagined): CNN+GRU
with staged transfer learning.

• Imagined-Only (Transformer): CNN+Transformer
trained from scratch on imagined data.

• Curriculum (Transformer): CNN+Transformer with
staged transfer.

• Vocalized-Pretrained Only (GRU): CNN+GRU pre-
trained on vocalized, directly fine-tuned on imagined
(no mimed stage).

• Vocalized-Pretrained Only (Transformer):
CNN+Transformer pre-trained on vocalized, di-
rectly fine-tuned on imagined (no mimed stage).

All models are evaluated on the imagined speech test sets
for final comparison.

4.2. Results

The curriculum transfer models nearly match the perfor-
mance of the direct imagined-only baselines on sentences
in terms of correlation and DTW correlation. The trans-
former model also nearly matched the baseline for pitch
correlation, while the GRU model was further off. How-
ever, both the GRU and transformer curriculum models un-
derperformed the baseline significantly in terms of MCD
and Pitch RMSE (the latter is of particular importance for
languages like Mandarin).

Imagined word reconstruction has similar trends, but the
baseline transformer completely flopped in both types of
correlation, presumably because the transformer architec-
ture is not optimized for shorter sequences like this. It is in-
teresting to note that the curriculum transfer learning helped
rectify this abysmal performance from the transformer,
which suggests that the vocalized/mimed pre-training may
be useful in helping the transformer understand imagined
context in a more nuanced way.

Finally, we note that during training the curriculum
model tended to outperform the baseline trained on <50
epochs. Since the curriculum only fine-tunes on the imag-
ined corpus for 10 epochs at a very low learning rate, this
suggests that there is significant cross-modal transfer learn-
ing occurring, enough so that even with a totally frozen
CNN we can achieve results comparable to the baseline. It
is an open question whether the cross-modal freezing pre-
served features that would otherwise not be learned by the
baseline itself in later epochs, but the significantly improved
correlation of the transformer seems to suggest it might.
More research is needed into whether or not this curriculum
can be leveraged on new, rich, datasets to support models
that learn better than a limited baseline.

5. Discussion
Curriculum transfer learning substantially improves

imagined speech reconstruction from brain activity, achiev-
ing comparable performance to a model trained solely on
imagined data—while requiring significantly fewer epochs



for fine-tuning. By leveraging data from overt speech (vo-
calized) and covert speech (mimed) as intermediate training
steps, the model gains a stronger initial mapping of neural
signals to acoustics. This is especially valuable given the
limited and noisier data available for pure imagination. The
improvements suggest that the model trained with our cur-
riculum may be better at extracting and preserving latent
speech content present in the sEEG signals, even when no
sound is produced.

Our findings align with neuroscience evidence that
covert speech shares representational structure with overt
speech [4]. Incorporating the mimed stage proved sur-
prisingly inconsequential—skipping it led to no significant
change in performance, suggesting that silent articulations
do not provide crucial bridging information.

It is worth noting, however, that VocalMind’s data is
collected from a single subject, whereas real-world BCIs
require generalization across users. Whether training a
model using sEEG data collected from multiple speakers
with a curriculum approach—and then adapting it to a new
user’s imagined speech data—can enable effective transfer
remains an open question. Still, collecting sEEG data re-
mains a challenging and resource-intensive process to col-
lect sEEG data, let alone find participants willing to con-
tribute large volumes of data.

One promising direction for improving generalization is
to incorporate unsupervised pre-training on a large corpus
of resting-state sEEG. By initializing the encoder with rep-
resentations learned from this broader neural activity we
may be able to enhance downstream performance during
speech fine-tuning.

6. Conclusion

We presented a curriculum transfer learning method to
improve imagined speech reconstruction from sEEG sig-
nals, by sequentially training on vocalized, mimed, and
imagined speech data. In evaluations on the VocalMind
dataset, our approach yielded similar spectrogram and au-
dio reconstruction performance compared to models trained
solely on imagined speech. These results highlight that
knowledge acquired from overt speech can be successfully
leveraged to decode covert and internal speech, addressing
a key hurdle in speech BCI development.

Acknowledgments

We would like to thank Professor Ranjay Krishna for
introducing us to the intricate and profound world of deep
learning and for being an amazing professor and mentor!

References
[1] G. K. Anumanchipalli, J. Chartier, and E. F. Chang. Speech

synthesis from neural decoding of spoken sentences. Nature,
568:493–498, 2019. 1, 2

[2] F. V. Arthur and T. G. Csapó. Speech synthesis from intracra-
nial stereotactic eeg using a neural vocoder. Infocommunica-
tions Journal, 16:47–55, 2024. 2

[3] M. Angrick et al. Real-time synthesis of imagined speech pro-
cesses from minimally invasive recordings of neural activity.
Commun. Biol., 4(1055), 2021. 2

[4] P. Z. Soroush et al. The nested hierarchy of overt, mouthed,
and imagined speech activity evident in intracranial record-
ings. NeuroImage, 269:119913, 2023. 1, 2, 5

[5] S. L. Metzger et al. A high-performance neuroprosthesis for
speech decoding and avatar control. Nature, 620:1037–1046,
2023. 1, 2

[6] T. He et al. Vocalmind: A stereotactic eeg dataset for vo-
calized, mimed, and imagined speech in tonal language. Sci.
Data, 12(657), 2025. 1, 2, 3, 4

[7] W. Xiong, L. Ma, and H. Li. Synthesizing intelligible ut-
terances from eeg of imagined speech. Front. Neurosci., 19,
2025. 2



Appendix



Figure 1. Performance comparison between GRU and Transformer models on sentence-level decoding, based on evaluation metrics across
vocalized, mimed, and imagined speech.

Figure 2. Performance comparison between GRU and Transformer models on word-level decoding, based on evaluation metrics across
vocalized, mimed, and imagined speech.



Figure 3. The evaluation metrics for each of the 6 models on sentence-level decoding, shown across vocal, mimed, and imagined speech.



Figure 4. The evaluation metrics for each of the 6 models on word-level decoding, shown across vocal, mimed, and imagined speech.
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